Text Classification Part 2: Preprocessing and Feature Engineering

CSCI 1460: Computational Linguistics
Lecture 3
Topics

• Train-Test Splits and Baselines
• Preprocessing
• Feature Engineering
 • Weighting Strategies
 • Ngrams
• More Advanced Features
Quiz Recap

Below are the parameters for a Naive Bayes sentiment classifier. What is the evidence (P(X|Y)) for the positive and negative classes, respectively?

55 / 96 correct responses
Naive Bayes Classifiers

Bayes Rule

\[P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \]

- Posterior
- Likelihood
- Prior
- Marginal
Quiz Recap

• Lots of questions about the x vector in logistic regression!
• (My slide used made up numbers, sorry!)
Logistic Regression Classifiers
Inference

Logistic Regression

<table>
<thead>
<tr>
<th></th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>0.5</td>
</tr>
<tr>
<td>This</td>
<td>0.5</td>
</tr>
<tr>
<td>600</td>
<td>1.0</td>
</tr>
<tr>
<td>👇</td>
<td>1.0</td>
</tr>
<tr>
<td>Awesome</td>
<td>0.6</td>
</tr>
<tr>
<td>Policies</td>
<td>0.2</td>
</tr>
</tbody>
</table>

600 Awesome Tax Policies
Logistic Regression Classifiers

Inference

<table>
<thead>
<tr>
<th></th>
<th>(w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>0.5</td>
</tr>
<tr>
<td>This</td>
<td>0.5</td>
</tr>
<tr>
<td>600</td>
<td>1.0</td>
</tr>
<tr>
<td>😞</td>
<td>1.0</td>
</tr>
<tr>
<td>Awesome</td>
<td>0.6</td>
</tr>
<tr>
<td>Policies</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\[
y = \vec{w} \cdot \vec{x}
\]

Logistic Regression Classifiers

Inference

<table>
<thead>
<tr>
<th></th>
<th>w</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>This</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>600</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>📈</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Awesome</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>Policies</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
y = \vec{w} \cdot \vec{x}
\]

600 Awesome Tax Policies
Logistic Regression Classifiers

Inference

<table>
<thead>
<tr>
<th></th>
<th>w</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>This</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>600</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>👎</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>Awesome</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>Policies</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
y = \mathbf{w} \cdot \mathbf{x}
\]

\[
y = 0.5 + 0 + 1 + 0 + 0.6 + 0.2 = 2.3
\]
Logistic Regression Classifiers

Inference

<table>
<thead>
<tr>
<th>x</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>0.5</td>
</tr>
<tr>
<td>This</td>
<td>0.5</td>
</tr>
<tr>
<td>600</td>
<td>1.0</td>
</tr>
<tr>
<td>👎</td>
<td>1.0</td>
</tr>
<tr>
<td>Awesome</td>
<td>0.6</td>
</tr>
<tr>
<td>Policies</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$$y = \frac{1}{1 + e^{- (2.3 \cdot \mathbf{w} \cdot \mathbf{x})}}$$

600 Awesome Tax Policies
Logistic Regression Classifiers

Inference

<table>
<thead>
<tr>
<th>x</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tax</td>
<td>0.5</td>
</tr>
<tr>
<td>This</td>
<td>0.5</td>
</tr>
<tr>
<td>600</td>
<td>1.0</td>
</tr>
<tr>
<td>🍁</td>
<td>1.0</td>
</tr>
<tr>
<td>Awesome</td>
<td>0.6</td>
</tr>
<tr>
<td>Policies</td>
<td>0.2</td>
</tr>
</tbody>
</table>

$$y = \frac{1}{1 + e^{-(2.3)}}$$

$p(Y=1) = 0.91$
Topics

- Train-Test Splits and Baselines
- Preprocessing
- Feature Engineering
 - Weighting Strategies
 - Ngrams
 - More Advanced Features
Baselines

• Baseline: A simpler model/way of solving the problem
 • Used to put results in context
• E.g., 80% sounds pretty good, but if “always predict spam” gets 80% accuracy, then an ML model which gets 80% is not very impressive…
Baselines

• Baseline: A simpler model/way of solving the problem
 • Used to put results in context
• E.g., 80% sounds pretty good, but if “always predict spam” gets 80% accuracy, then an ML model which gets 80% is not very impressive…
Baselines

- Common baselines to report:
 - Random: Guess at random
 - “Most frequent class”: For classification tasks, always predict whichever label is most common in the training set
 - Prior state-of-the-art (SOTA): i.e., the “defending champ”
 - Various task-specific heuristics, e.g.,
 - For QA: pick the first name in the passage
 - For IR: sort documents according to length
 - Usually requires some creativity
Baselines

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang
{pranavsr,zjian,klopyrev,pliang}@cs.stanford.edu
Computer Science Department
Stanford University

<table>
<thead>
<tr>
<th></th>
<th>Exact Match</th>
<th></th>
<th>F1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Test</td>
<td>Dev</td>
<td>Test</td>
</tr>
<tr>
<td>Random Guess</td>
<td>1.1%</td>
<td>1.3%</td>
<td>4.1%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Sliding Window</td>
<td>13.2%</td>
<td>12.5%</td>
<td>20.2%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Sliding Win. + Dist.</td>
<td>13.3%</td>
<td>13.0%</td>
<td>20.2%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>40.0%</td>
<td>40.4%</td>
<td>51.0%</td>
<td>51.0%</td>
</tr>
<tr>
<td>Human</td>
<td>80.3%</td>
<td>77.0%</td>
<td>90.5%</td>
<td>86.8%</td>
</tr>
</tbody>
</table>

Table 5: Performance of various methods and humans. Logistic regression outperforms the baselines, while there is still a significant gap between humans.
Baselines

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang
{pranavr,zjian,klopyrev,pliang}@cs.stanford.edu
Computer Science Department
Stanford University

<table>
<thead>
<tr>
<th></th>
<th>Exact Match</th>
<th></th>
<th>F1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Test</td>
<td>Dev</td>
<td>Test</td>
</tr>
<tr>
<td>Random Guess</td>
<td>1.1%</td>
<td>1.3%</td>
<td>4.1%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Sliding Window</td>
<td>13.2%</td>
<td>12.5%</td>
<td>20.2%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Sliding Win. + Dist.</td>
<td>13.3%</td>
<td>13.0%</td>
<td>20.2%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>40.0%</td>
<td>40.4%</td>
<td>51.0%</td>
<td>51.0%</td>
</tr>
<tr>
<td>Human</td>
<td>80.3%</td>
<td>77.0%</td>
<td>90.5%</td>
<td>86.8%</td>
</tr>
</tbody>
</table>

Table 5: Performance of various methods and humans. Logistic regression outperforms the baselines, while there is still a significant gap between humans.
Baselines

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang
{pranavr, zjian, klopypyrev, pliang}@cs.stanford.edu
Computer Science Department
Stanford University

<table>
<thead>
<tr>
<th></th>
<th>Exact Match</th>
<th></th>
<th>F1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Test</td>
<td>Dev</td>
<td>Test</td>
</tr>
<tr>
<td>Random Guess</td>
<td>1.1%</td>
<td>1.3%</td>
<td>4.1%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Sliding Window</td>
<td>13.2%</td>
<td>12.5%</td>
<td>20.2%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Sliding Win. + Dist.</td>
<td>13.3%</td>
<td>13.0%</td>
<td>20.2%</td>
<td>20.0%</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>40.0%</td>
<td>40.4%</td>
<td>51.0%</td>
<td>51.0%</td>
</tr>
<tr>
<td>Human</td>
<td>80.3%</td>
<td>77.0%</td>
<td>90.5%</td>
<td>86.8%</td>
</tr>
</tbody>
</table>

Table 5: Performance of various methods and humans. Logistic regression outperforms the baselines, while there is still a significant gap between humans.
Baselines

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang
{pranavr,zjian,klopyrev,pliang}@cs.stanford.edu
Computer Science Department
Stanford University

<table>
<thead>
<tr>
<th>Method</th>
<th>Exact Match</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Test</td>
</tr>
<tr>
<td>Random Guess</td>
<td>1.1%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Sliding Window</td>
<td>13.2%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Sliding Win. + Dist.</td>
<td>13.3%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>40.0%</td>
<td>40.4%</td>
</tr>
<tr>
<td>Human</td>
<td>80.3%</td>
<td>77.0%</td>
</tr>
</tbody>
</table>

Table 5: Performance of various methods and humans. Logistic regression outperforms the baselines, while there is still a significant gap between humans.
Baselines

• “Skylines”: upper bounds on performance
• Common skylines:
 • Human performance on the task
 • Performance under ideal conditions (e.g., how good would my QA system be if we tell it which sentence to look at...?)
Baselines

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang
{pranavr,zjian,klopyrev,pliang}@cs.stanford.edu
Computer Science Department
Stanford University

<table>
<thead>
<tr>
<th>Method</th>
<th>Exact Match</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Test</td>
</tr>
<tr>
<td>Random Guess</td>
<td>1.1%</td>
<td>1.3%</td>
</tr>
<tr>
<td>Sliding Window</td>
<td>13.2%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Sliding Win. + Dist.</td>
<td>13.3%</td>
<td>13.0%</td>
</tr>
<tr>
<td>Logistic Regression</td>
<td>40.0%</td>
<td>40.4%</td>
</tr>
<tr>
<td>Human</td>
<td>80.3%</td>
<td>77.0%</td>
</tr>
</tbody>
</table>

Table 5: Performance of various methods and humans. Logistic regression outperforms the baselines, while there is still a significant gap between humans.
Train-Test Splits

- What we really care about is performance on new data we haven’t seen before
 - I.e., data the model hasn’t trained on
- We need to simulate this scenario
- We “hold out” some data from training, so model can’t use it to set parameters
- Then we evaluate on the held out data
Train Test Splits

Beyond IID

• i.i.d.: train and test data are drawn from the same distribution
 • I.e., take a dataset, randomly shuffle it, and split it into 80% train/20% test
 • This is the most standard setting, a “traditional ML” setting
 • In real applications, test isn’t always i.i.d., i.e.,
 • You want to build a model of customers that generalizes to new markets (train in China, test in US)
 • You want to forecast disease spread that generalizes to the future (train in 2010—2019, test in 2020—2021)
 • You want to screen applicants for an internship, based on data on success of past interns (train data is from 1980—2000 when company was primarily white upper middle class, new applicant pool is more racially and socio-economically diverse)
Train Test Splits

Practice Question!

• Context: Social media director for a PR company

• Data: Instagram posts for 5000 new musicians, plus subsequent likes/reposts/comments and sales records.

• Goal: Predict the popularity of a post so we can optimize visibility of new clients.

How should I define my train/test splits here?

a) i.i.d., i.e., randomly split posts into train/test
b) hold out posts from the most recent year
c) hold out posts from 10% of artists
d) hold out least popular 10% of posts
Train Test Splits

Practice Question!

• Context: Social media director for a PR company

• Data: Instagram posts for 5000 new musicians, plus subsequent likes/reposts/comments and sales records.

• Goal: Predict the popularity of a post so we can optimize visibility of new clients.

How should I define my train/test splits here?

a) i.i.d., i.e., randomly split posts into train/test
b) hold out posts from the most recent year
(c) hold out posts from 10% of artists
d) hold out least popular 10% of posts
Train Test Splits

Practice Question!

• Context: Hedge fund manager

• Data: Social media chatter about companies plus daily stock prices for those companies over past .

• Goal: Detect when there is going to be another “GameStop situation”…i.e., sudden spike in a stoke's price

How should I define my train/test splits here?

a) i.i.d.: randomly split daily returns into train/test
b) hold out data from the most recent N years
c) hold out data from 10% of companies
d) hold out data from companies that experienced spikes
Train Test Splits

Practice Question!

- Context: Hedge fund manager
- Data: Social media chatter about companies plus daily stock prices for those companies over past ...
- Goal: Detect when there is going to be another “GameStop situation”...i.e., sudden spike in a stock's price

How should I define my train/test splits here?

a) i.i.d.: randomly split daily returns into train/test
b) hold out data from the most recent N years
c) hold out data from 10% of companies
d) hold out data from companies that experienced spikes
Topics

• Train-Test Splits and Baselines
• Preprocessing
• Feature Engineering
 • Weighting Strategies
 • Ngrams
 • More Advanced Features
Preprocessing vs. Features

• No clear line!
• Generally:
 • **Preprocessing** steps are about defining the **vocabulary**. Decisions about preprocessing affect all the features.
 • **Features** are about capturing aspects of the language that will help the model solve the task. Can be as complex as you want them to be, and each feature is independent.
Preprocessing vs. Features

Disclaimer: This is pseudocode! It doesn't actually run.

```python
y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(preprocessed_data)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)
```
Preprocessing vs. Features

plain text documents (e.g., scraped from the internet)

```python
y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(preprocessed_data)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)
```
```
y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(preprocessed_data)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)
```

"cleaned up" text, often in some simple data structure (list of words).
Preprocessing vs. Features

```
y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(preprocessed_data)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)
```

“cleaned up” text, often in some simple data structure (list of words).

Disclaimer: This is pseudocode! It doesn’t actually run.

(sometimes more complex, e.g., if your features require some metadata)
Preprocessing vs. Features

y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(preprocessed_data)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)

feature matrix
(n_examples x n_features
matrix with numeric values)
Topics

• Train-Test Splits and Baselines
• **Preprocessing**
• Feature Engineering
 • Weighting Strategies
 • Ngrams
 • More Advanced Features
Preprocessing

One column for each word in the vocabulary

<table>
<thead>
<tr>
<th>Y</th>
<th>New</th>
<th>Tax</th>
<th>This</th>
<th>600</th>
<th>baby</th>
<th>...</th>
<th>18</th>
<th>healthy</th>
<th>foods</th>
<th>that</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Preprocessing

"word" and "vocabulary" are both up to you!

<table>
<thead>
<tr>
<th></th>
<th>Y</th>
<th>New</th>
<th>Tax</th>
<th>This</th>
<th>600</th>
<th>baby</th>
<th>...</th>
<th>18</th>
<th>healthy</th>
<th>foods</th>
<th>that</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
Preprocessing

Are these the same word?

- “color” vs. “colour”?
- “apple” vs. “Apple”?
- “laugh” vs. “laughing” vs. “laughter”?
- “so” vs. “sooooooooooooooo”?
- “laugh” vs. “giggle”?
- “apple” vs. “fruit”?
Preprocessing
Are these the same word?

• “color” vs. “colour”?
• “apple” vs. “Apple”?
• “laugh” vs. “laughing” vs. “laughter”?
• “so” vs. “sooooooooooooooo”?
• “laugh” vs. “giggle”?
• “apple” vs. “fruit”?

maybe yes if you are building QA system
probably no if you are building a geo-locator
Preprocessing
Are these the same word?

- “color” vs. “colour”?
- “apple” vs. “Apple”?
- “laugh” vs. “laughing” vs. “laughter”?
- “so” vs. “sooooooooooooooo”?
- “laugh” vs. “giggle”?
- “apple” vs. “fruit”?

maybe yes if you are using social media/chat data
probably no if you are working with WSJ data
Preprocessing
Are these the same word?

• “color” vs. “colour”?
• “apple” vs. “Apple”?
• “laugh” vs. “laughing” vs. “laughter”?
• “so” vs. “sooooooooooooo”?
• “laugh” vs. “giggle”?
• “apple” vs. “fruit”?

maybe yes if you are building an IR system

probably no if you are training a speech recognition system
Preprocessing
Are these the same word?

• “color” vs. “colour”?
• “apple” vs. “Apple”?
• “laugh” vs. “laughing” vs. “laughter”?
• “so” vs. “sooooooooooooooo”?
• “laugh” vs. “giggle”?
• “apple” vs. “fruit”?

maybe yes if you are building an ad-matching model
probably no if you are doing machine translation
Preprocessing

Common Steps

• Strip boilerplate/html/etc
• Tokenization
• Stemming/Lemmatization
• Lowercasing
• Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
• Setting a Vocab Size/Defining “<OOV>”
Preprocessing
Common Steps

• Strip boilerplate/html/etc
• Tokenization
• Stemming/Lemmatization
• Lowercasing
• Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
• Setting a Vocab Size/Defining “<OOV>”
• Word Sense Disambiguation
• Combining Synonyms/Paraphrases

Less common, but worth knowing about
Preprocessing

Common Steps
Three basic levers of control:

1. **Grind**

Without controversy, grind is the most important element. Without a consistent grind, nothing else you do will be able to correct how your coffee extracts. You cannot dose, distribute, tamp or pull your way out of a bad grind.

- Using a burr grinder is key for a consistent grind size when making espresso. You cannot use a chop grinder and achieve the needed grind consistency.

- Chopping your beans with a tiny spinning blade will leave you with messy variables within your grind, causing your coffee to extract poorly; over-extracting the finer grounds and under-extracting the coarser grounds.

- Dial in the SAI Millwright Hand Grinder for the perfect espresso grind.

2. **Dose**

Your dose is how much ground coffee you put in your portafilter basket before distributing and tamping.

- It is important to Dose by the volumetric standard of your portafilter basket.

- After Dosing, evenly distribute your grounds with the SAI BT distribution tool, and tamp uniformly with the SAI New Levy tool.
Preprocessing

Common Steps

• Strip boilerplate/html/etc
• Tokenization
• Stemming/Lemmatization
• Lowercasing
• Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
• Setting a Vocab Size/Defining “<OOV>”
• Word Sense Disambiguation
• Combining Synonyms/Paraphrases
Three basic levers of control:

1. Grind

Without controversy, grind is the most important element. Without a consistent grind, nothing else you do will be able to correct how your coffee extracts. You cannot dose, distribute, tamp or pull your way out of a bad grind.

- Using a burr grinder is key for a consistent grind size when making espresso. You cannot use a chop grinder and achieve the needed grind consistency.

- Chopping your beans with a tiny spinning blade will leave you with messy variables within your grind, causing your coffee to extract poorly; over-extracting the finer grounds and under-extracting the coarser grounds.

- Dial in the SAI Millwright Hand Grinder for the perfect espresso grind.

2. Dose

Your dose is how much ground coffee you put in your portafilter basket before distributing and tamping. It is important to Dose by the volumetric standard of your portafilter basket.

- After Dosing, evenly distribute your grounds with the SAI BT distribution tool, and tamp uniformly with the SAI New Levy tool.
Preprocessing
Stripping Boilerplate

- Typically done with regex
- There are libraries for standard things (html)
 - beautifulsoup is great for html
- Can be dataset specific
 - e.g., “Madam Speaker…”

Three basic levers of control: 1. Grind Without controversy, grind is the most important element. Without a consistent grind, nothing else you do will be able to correct how your coffee extracts. You cannot dose, distribute, tamp or pull your way out of a bad grind.- Using a burr grinder is key for a consistent grind size when making espresso. You cannot use a chop grinder and achieve the needed grind consistency. Chopping your beans with a tiny spinning blade will leave you with messy variables within your grind, causing your coffee to extract poorly; over-extracting the finer grounds and under extracting the coarser grounds. Dial in the SAI Millwright Hand Grinder for the perfect espresso grind. 2. Dose Your dose is how much ground coffee you put in your portafilter basket before distributing and tamping.- It is important to Dose by the volumetric standard of your portafilter basket.- After Dosing, evenly distribute your grounds with the SAI BT distribution tool, and tamp uniformly with the SAI New Levy tool.
Preprocessing

Three basic levers of control:

1. Grind
 - Without controversy, grind is the most important element. Without a consistent grind, nothing else you do will be able to correct how your coffee extracts. You cannot dose, distribute, tamp or pull your way out of a bad grind.
 - Using a burr grinder is key for a consistent grind size when making espresso. You cannot use a chop grinder and achieve the needed grind consistency. Chopping your beans with a tiny spinning blade will leave you with messy variables within your grind, causing your coffee to extract poorly; over-extracting the finer grounds and under-extracting the coarser grounds.
 - Dial in the SAI Millwright Hand Grinder for the perfect espresso grind.

2. Dose
 - Your dose is how much ground coffee you put in your portafilter basket before distributing and tamping.
 - It is important to Dose by the volumetric standard of your portafilter basket.
 - After Dosing, evenly distribute your grounds with the SAI BT distribution tool, and tamp uniformly with the SAI New Levy tool.

Can choose to hand-write rules to clean up further, but these can be page specific and might not help performance.

Real data will always have some weirdness to it.
Preprocessing
Common Steps

- Strip boilerplate/html/etc
- **Tokenization**
- Stemming/Lemmatization
- Lowercasing
- Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
- Setting a Vocab Size/Defining “<OOV>”
- Word Sense Disambiguation
- Combining Synonyms/Paraphrases
Preprocessing
Tokenization

- Need to split into “words”!
- Often, split on whitespace is the simplest way
- Works okay for English, but not other languages

Preprocessing

Tokenization

• Need to split into “words”!
• Often, split on whitespace is the simplest way
• Works okay for English, but not other languages

Without controversy, grind is the most important element. Without a consistent grind, nothing you do will be able to correct how your coffee extracts. You cannot dose, distribute, tamp, or pull your way out of a bad grind.-
Preprocessing

Tokenization

• Need to split into “words”!
• Often, split on whitespace is the simplest way
• Works for English, but not other languages
• Usually, use tokenization models that, e.g., split off punctuation (more next lecture)

['1', '.', 'Grind', 'Without', 'controversy', ',', ',', 'grind', 'is', 'the', 'most', 'important', 'element. Without', 'a' 'consistent', 'grind', 'nothing', 'else', 'you', 'do', 'will', 'be', 'able', 'to', 'correct', 'how', 'your', 'coffee', 'extracts', '.', '.', 'You', 'cannot', 'dose', ',', ',', 'distribute', ',', ',', 'tamp', ',', 'or', 'pull', 'your', 'way', 'out', 'of', 'a', 'bad', 'grind', '.', '.', '-']
Preprocessing

Tokenization

- Need to split into “words”!
- Often, split on whitespace is the simplest way.
Preprocessing
Common Steps

• Strip boilerplate/html/etc
• Tokenization
• **Stemming/Lemmatization**
• Lowercasing
• Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
• Setting a Vocab Size/Defining “<OOV>”
• Word Sense Disambiguation
• Combining Synonyms/Paraphrases
Preprocessing

Stemming/Lemmatization

- We want different forms of a word to count as the same!
- strips plural markers ("dogs" -> dog)
- strips verb conjugations (-ing, -ed, etc)
- Custom models for stripping off "extra" info (more next lecture)

[‘1’ .’, ‘Grind’, ‘Without’, ‘controversy’, ‘,’ ,
 ‘grind’, ‘is’, ‘the’, ‘most’, ‘important’,
 ‘element. Without’, ‘a’ ‘consistent’,
 ‘dose’, ‘’, ‘distribute’, ‘’, ‘tamp’, ‘or’,
 ‘grind’, ‘.’, ‘-’]
Grind

Without controversy, grind be the most important element. Without a consistent grind, nothing else you do will be able to correct how your coffee extract. You cannot dose, distribute, tamp or pull your way out of a bad grind.

Preprocessing
Stemming/Lemmatization

• We want different forms of a word to count as the same!
• strips plural markers (“dogs” -> dog)
• strips verb conjugations (-ing, -ed, etc)
• Custom models for stripping off “extra” info (more next lecture)
Preprocessing
Common Steps

- Strip boilerplate/html/etc
- Tokenization
- Stemming/Lemmatization
- **Lowercasing**
- Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
- Setting a Vocab Size/Defining “<OOV>”
- Word Sense Disambiguation
- Combining Synonyms/Paraphrases
Preprocessing
Stemming/Lemmatization

• Usually we lowercase everything
• Typically happens after other preprocessing steps (e.g., parsing/syntax) since case can be a good feature
• In some applications, lowercase hurts performance!

"1 . 'Grind', 'Without', 'controversy', ',', 'grind', 'be', 'the', 'most', 'important', 'element. Without', 'a' 'consistent', 'grind,', 'nothing', 'else', 'you', 'do', 'will', 'be', 'able', 'to', 'correct', 'how', 'your', 'coffee', 'extract', '.', 'You', 'cannot', 'dose', 'distribute', ',', 'tamp', 'or', 'pull', 'your', 'way', 'out', 'of', 'a', 'bad', 'grind', '.', ' -'"
Preprocessing

Stemming/Lemmatization

- Usually we lowercase everything
- Typically happens after other preprocessing steps (e.g., parsing/syntax) since case can be a good feature
- In some applications, lowercase hurts performance!

Preprocessing
Common Steps

• Strip boilerplate/html/etc
• Tokenization
• Stemming/Lemmatization
• Lowercasing
• **Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)**
• Setting a Vocab Size/Defining “<OOV>”
• Word Sense Disambiguation
• Combining Synonyms/Paraphrases
Preprocessing
Removing Stop Words

• Lots of (very cool! very important! very special!) words are unlikely to make a difference for tasks
• Punctuation
• “Stop Words” (top K in vocab, or hand-picked)
• Numbers (too sparse)

Preprocessing
Removing Stop Words

• Lots of (very cool! very important! very special!) words are unlikely to make a difference for tasks
• Punctuation
• “Stop Words” (top K in vocab, or hand-picked)
• Numbers (too sparse)
Preprocessing

Common Steps

- Strip boilerplate/html/etc
- Tokenization
- Stemming/Lemmatization
- Lowercasing
- Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
- **Setting a Vocab Size/Defining “<OOV>”**
- Word Sense Disambiguation
- Combining Synonyms/Paraphrases
Preprocessing
Vocab Size and OOV

• Natural language vocabularies are huge!
 • (Even more so when we have noisy data, misspellings, tokenization errors, etc)
• Most words occur very rarely
• Even if these are “good” or “interesting” words, they are unlikely to be much help in practice
Preprocessing
Vocab Size and OOV

Zipf’s Law:
“The frequency of any word is inversely proportional to its rank in the frequency table” (Wikipedia)

https://en.wikipedia.org/wiki/Zipf%27s_law
Preprocessing
Vocab Size and OOV

Word Frequency vs. Word Rank

the = 7%

https://en.wikipedia.org/wiki/Zipf%27s_law
Preprocessing
Vocab Size and OOV

the = 7%
of = 3.5%

https://en.wikipedia.org/wiki/Zipf%27s_law
Preprocessing

Vocab Size and OOV

The most frequent 0.2% of words make up 50% of occurrences.

https://en.wikipedia.org/wiki/Zipf%27s_law
Zipf's law

Preprocessing

Vocab Size and OOV

• Typically, set some size N (e.g., 20K) and keep only the most frequent N words

• Alternatively, set a threshold k (e.g., 10) and throw away words that occur fewer than k times

• Replace others with special token (<OOV> or <UNK>)
Preprocessing
Vocab Size and OOV

• Typically, set some size N (e.g., 20K) and keep only the most frequent N words
• Alternatively, set a threshold k (e.g., 10) and throw away words that occur fewer than k times
• Replace others with special token (<OOV> or <UNK>)
Preprocessing

Common Steps

- Strip boilerplate/html/etc
- Tokenization
- Stemming/Lemmatization
- Lowercasing
- Removing “Semantically Vacuous” Words (Punctuation, Stop Words, Numbers)
- Setting a Vocab Size/Defining “<OOV>”
- Word Sense Disambiguation
- Combining Synonyms/Paraphrases
Preprocessing
Word Sense Disambiguation

• “homographs” -> string identical, but different “meanings”
 • sometimes called “polysemes”/“polysemy” in NLP
• E.g., “bat”, “bank”, “park”, “fly”, …
• Lots of research on:
 • Building inventories of word senses
 • Building models to identify, for a given instance of a word, which “sense” it is
Preprocessing

WordNet

- http://wordnetweb.princeton.edu/perl/webwn
- Organizes words into “synsets” (groups of words with the same meaning)
- Synsets are then organized hierarchically (nouns) or as a graph (verbs, adjectives)

WordNet Search - 3.1
- WordNet home page - Glossary - Help

Word to search for: bat

Display Options: [Select option to change]

Key: "S." = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun
- S: (n) bat, chiropteran (nocturnal mouselike mammal with forelimbs modified to form membranous wings and anatomical adaptations for echolocation by which they navigate)
- S: (n) bat, at-bat (a baseball player trying to get a hit) “he was at bat when it happened”; “he got four hits in four at-bats”
- S: (n) squash racket, squash racquet, bat (a small racket with a long handle used for playing squash)
- S: (n) cricket bat, bat (the club used in playing cricket) “a cricket bat has a narrow handle and a broad flat end for hitting”
- S: (n) bat (a club used for hitting a ball in various games)

Verb
- S: (v) bat (strike with, or as if with a baseball bat) “bat the ball”
- S: (v) bat, flutter (wink briefly) “bat one’s eyelids”
- S: (v) bat (have a turn at bat) “Jones bats first, followed by Martinez”
- S: (v) bat (use a bat) “Who’s batting?”
- S: (v) cream, bat, clobber, drub, thrash, lick (beat thoroughly and conclusively in a competition or fight) “We licked the other team on Sunday!”
Preprocessing

WordNet

• http://wordnetweb.princeton.edu/perl/webwn

• Organizes words into “synsets” (groups of words with the same meaning)

• Synsets are then organized hierarchically (nouns) or as a graph (verbs, adjectives)
Preprocessing

Lexical Paraphrase/Differentiation

• During preprocessing, some use tools like part of speech taggers, WSD, and/or WordNet to map words to more abstract categories

• You might see, e.g.,:
 • bat_NN -> bat as a noun (vs. verb)
 • bat.n.01 -> bat as a noun, specifically the first synset in WordNet
 • bat.n.01_animal.n.03_entity.n.01, … -> adding in additional information about hyponym info
Preprocessing

Just for fun!
Preprocessing
Just for fun!

take dog get free cup <OOV> <OOV> . sit outside , course , love .
favorite <OOV> <OOV> <OOV> <OOV> waffle <OOV> . <OOV> thing try , feel
like time want try new . stick favorite :)

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
took our dog there and she got a free cup of vanilla gelato. we sat outside, of course, but she loved it. my favorite combo is coconut and roasted almond with a waffle cone. sooo many things to try, I feel like every time I go in I want to try something new. but I always stick with my favorite :)
Just for fun!

<OOV> room <OOV> <OOV> , <OOV> <OOV> . food expensive . egg , slice toast , cup hash - $ <OOV> . server way <OOV> . stay <OOV> , like , stay away . day . <OOV> repair <OOV> <OOV> try <OOV> smell <OOV> <OOV> bathroom . let know <OOV> . , <OOV> <OOV> . room <OOV> . sure bad , <OOV> , <OOV> <OOV> ! case , bathroom <OOV> <OOV> <OOV> <OOV> . maybe fix leave . bad " star " rating . understand comment <OOV> high price pay room . expectation high $ <OOV> .

⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐ ⭐
There are no bathtubs in any rooms except the executive suites, only narrow showers. The food is expensive. Two eggs, two slices of toast, one cup of hash - $17. Servers are way too patronizing. Unless you have to stay here for a conference, like me, stay away. And this is only my first day. Had to call maintenance to repair a leaky toilet and to try and avert the smell of sewer gas in the bathroom. I will let you know if they corrected it. Well, the operator lied to me. There are rooms with bathtubs. not sure which is worse, the lie, or a narrow shower! In any case, my bathroom still stinks and the toilet still leaks. Maybe they will fix it after I leave. Too bad they don't have "no stars" as a rating. Understand that my comments are all related to the high price I am paying for the room. My expectations are as high as $200 or so.
Preprocessing
Just for fun!

food good spicy instead flavorful sauce salsa taste like tomato
service bit <OOV> waiter actually leave <OOV> meal order vegetarian
chili <OOV> serve meat atmosphere amazing beautiful restaurant <OOV>
food <OOV> <OOV> location <OOV> perfect

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Food was good, spicy instead of flavorful. All the sauces/salsas tasted too much like tomato to me. Service was a bit apathetic waiter actually left halfway through meal. Ordered a vegetarian chili relleno and was served one with meat. Atmosphere is amazing, beautiful restaurant. If you could meld the food of Poca Cosa with the location of Penca it would be perfect.
Preprocessing

Wrap Up

• “Preprocessing” refers to steps we take to “clean up” the language input before extracting features
• Preprocessing pipelines vary significantly from one use case to the next
• Researchers/engineers tend to try lots of things and see what works for their application and data
 • (Typically, use cross-validation on train/dev to decide on strategies. Then, at the end, test on a held out test!)
Topics

- Train-Test Splits and Baselines
- Preprocessing
- **Feature Engineering**
 - Weighting Strategies
 - Ngrams
 - More Advanced Features
Preprocessing vs. Features

Disclaimer: This is pseudocode! It doesn’t actually run.

```python
y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(X)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)

# feature matrix
(n_examples x n_features matrix with numeric values)
```
Preprocessing vs. Features

y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(preprocessed_data)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)

typically calls a series of functions, each computing a different feature/set of features. these functions can be simple or very complex.

def extract_features(dat):
 feature_fn1(dat)
 feature_fn2(dat)
 ...
 feature_fnk(dat)

Disclaimer: This is pseudocode! It doesn't actually run.
Topics

- Train-Test Splits and Baselines
- Preprocessing
- Feature Engineering
 - Weighting Strategies
 - Ngrams
 - More Advanced Features
Preprocessing vs. Features

```python
y, raw_data = load_data(file)
preprocessed_data = preprocess(raw_data)
X = extract_features(preprocessed_data)
train_X, train_y, test_X, test_y = split(X, y)
model = train_model(train_X, train_y)
score = evaluate(model, test_X, test_y)
```

```python
def extract_features(dat):
    get_bow_features(dat)
```

Disclaimer: This is pseudocode! It doesn’t actually run.
Feature Engineering
Weighting BOW Models

• **Basic BOW**: 1 if a word is present, 0 otherwise
 • This works surprisingly well!

• **Count-Based**: # of times word appears in the document

• **tf-idf**: Weighting scheme designed to upweight “important” words
Feature Engineering

tf-idf

- Assigns higher weights to words that differentiate this document from other documents
- \(\text{tf-idf}(\text{word}, \text{doc}) = \frac{\text{(# times word appears in doc)}}{\text{(# of times word appears across all documents)}} \)
- Can filter out low tf-idf words or else just reweight the term-document matrix accordingly
Feature Engineering

tf-idf

```
doc1
html does not work

doc 2
html does work. all
webdev is awesome.

doc 3
webdev: html
does work
```

<table>
<thead>
<tr>
<th></th>
<th>html</th>
<th>does</th>
<th>not</th>
<th>work</th>
<th>at</th>
<th>all</th>
<th>webdev</th>
<th>is</th>
<th>awesome</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>doc2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>doc3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Feature Engineering

tf-idf

What is the tf-idf vector for doc1?

- a) \(\frac{1}{3} \quad \frac{1}{3} \quad 1 \quad \frac{1}{3} \quad 0 \quad \frac{1}{2} \quad 1 \quad 0 \quad 1\)
- b) \(\frac{1}{2} \quad \frac{1}{3} \quad 1 \quad \frac{1}{3} \quad 1 \quad \frac{1}{2} \quad 1 \quad 0 \quad \frac{1}{2} \quad 1\)
- c) \(\frac{1}{3} \quad \frac{1}{3} \quad 1 \quad \frac{1}{2} \quad 1 \quad \frac{1}{2} \quad 1 \quad 0 \quad 0 \quad 0\)

<table>
<thead>
<tr>
<th></th>
<th>html</th>
<th>does</th>
<th>not</th>
<th>work</th>
<th>at</th>
<th>all</th>
<th>webdev</th>
<th>is</th>
<th>awesome</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>doc2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>doc3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Feature Engineering

tf-idf

<table>
<thead>
<tr>
<th></th>
<th>html</th>
<th>does</th>
<th>not</th>
<th>work</th>
<th>at</th>
<th>all</th>
<th>webdev</th>
<th>is</th>
<th>awesome</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>doc2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>doc3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

What is the tf-idf vector for doc1?

a) \(\frac{1}{3} \ \frac{1}{3} \ 1 \ \frac{1}{3} \ 0 \ \frac{1}{2} \ 1 \ 0 \ 1 \)

b) \(\frac{1}{2} \ \frac{1}{3} \ 1 \ \frac{1}{3} \ 1 \ \frac{1}{2} \ 0 \ \frac{1}{2} \ 1 \)

c) \(\frac{1}{3} \ \frac{1}{3} \ 1 \ \frac{1}{2} \ 1 \ \frac{1}{2} \ 0 \ 0 \ 0 \)
Feature Engineering

tf-idf

<table>
<thead>
<tr>
<th></th>
<th>html</th>
<th>does</th>
<th>not</th>
<th>work</th>
<th>at</th>
<th>all</th>
<th>webdev</th>
<th>is</th>
<th>awesome</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>doc2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>doc3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

html does not work

html does work. all webdev is awesome.

What is the tf-idf vector for doc1?

- **a)** `1/3 1/3 1 1/3 0 1/2 1 0 1`
- **b)** `1/2 1/3 1 1/3 1 1/2 0 1/2 1`
- **c)** `1/3 1/3 1 1/2 1 1/2 0 0 0`

df

- **html**: 3
- **does**: 3
- **not**: 1
- **work**: 2
- **at**: 1
- **all**: 2
- **webdev**: 2
- **is**: 1
- **awesome**: 1
Feature Engineering

tf-idf

<table>
<thead>
<tr>
<th></th>
<th>html</th>
<th>does</th>
<th>not</th>
<th>work</th>
<th>at all</th>
<th>webdev</th>
<th>is</th>
<th>awesome</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>doc2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>doc3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

What is the tf-idf vector for doc1?

- a) \(\frac{1}{3} \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0\)
- b) \(\frac{1}{2} \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1\)
- c) \(\frac{1}{3} \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0\)

- df
 - html: 3
 - does: 3
 - not: 1
 - work: 2
 - at: 1
 - all: 2
 - webdev: 2
 - is: 1
 - awesome: 1
Feature Engineering

tf-idf

<table>
<thead>
<tr>
<th></th>
<th>html</th>
<th>does</th>
<th>not</th>
<th>work</th>
<th>at</th>
<th>all</th>
<th>webdev</th>
<th>is</th>
<th>awesome</th>
</tr>
</thead>
<tbody>
<tr>
<td>doc1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>doc 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>doc 3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

What is the tf-idf vector for doc1?

a) 1/3 1/3 1 1/3 0 1/2 1 0 1

b) 1/2 1/3 1 1/3 1 1/2 0 1/2 1

c) 1/3 1/3 1 1/2 1 1/2 0 0 0
Topics

• Train-Test Splits and Baselines
• Preprocessing
• Feature Engineering
 • Weighting Strategies
• Ngrams
 • More Advanced Features
Feature Engineering
N-Grams

- n-gram: sequence of words of length n
- unigram: word
- bigram: two-word phrase
- trigram: three-word phrase
- 4-gram: four-word phrase…
- Simple way to add information about “context” to a BOW model
Feature Engineering

N-Grams

build up an n-gram vocabulary
for review in reviews:
 for i in (0, len(review)-n):
 vocab.add(review[i:i+n])

for each review, include all ngrams as features,
as though each one is a single word
for i in (0, len(review)):
 for j in (1,n):
 features.add(review[i:i+j])
Feature Engineering
N-Grams

<table>
<thead>
<tr>
<th>the</th>
<th>is</th>
<th>do</th>
<th>go</th>
<th>not</th>
<th>else</th>
<th>anywhere</th>
<th>restaurant</th>
<th>good</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
The restaurant is not good. Go anywhere else!

The restaurant is good! Do not go anywhere else.
Feature Engineering
N-Grams

The restaurant is not good. Go anywhere else!

The restaurant is good! Do not go anywhere else.
def extract_features(dat):
 get_bow_features(dat)
 for i in i..5:
 get_ngrams(dat, i)

Feature Engineering

N-Grams

\[y, \text{raw}_\text{data} = \text{load}_\text{data}(`file`) \]
\[\text{preprocessed}_\text{data} = \text{preprocess}(`raw_data`) \]
\[X = \text{extract}_\text{features}(`\text{preprocessed}_\text{data}`) \]
\[\text{train}_\text{X}, \text{train}_\text{y}, \text{test}_\text{X}, \text{test}_\text{y} = \text{split}(`X`, `y`) \]
\[\text{model} = \text{train}_\text{model}(`\text{train}_\text{X}`, `\text{train}_\text{y}`) \]
\[\text{score} = \text{evaluate}(`\text{model}`, `\text{test}_\text{X}`, `\text{test}_\text{y}`) \]
Feature Engineering

N-Grams

- Assuming a vocabulary of size 10K, how many unique bigrams are there (worst case)?
 - $10K \times 10K = 100M$
- How many unique k-grams?
 - $10K^k!!$
- In practice, these numbers are much much much lower.
 - Language is not random! Most ngrams are syntactically or semantically “illegal”, and will occur rarely or never
 - e.g., “the of”, “my the and”, “a tallest person”
- But its still a very large feature space!
Feature Engineering
N-Grams

• What is the right size of ngrams?
• It depends!
• Tradeoff between expressivity and generalization
• more ngrams = much larger feature matrix (most of which is 0), more parameters to estimate, more likely to overfit
Topics

- Train-Test Splits and Baselines
- Preprocessing
- Feature Engineering
 - Weighting Strategies
 - Ngrams
- More Advanced Features
Feature Engineering

More Advanced Features

```python
def extract_features(dat):
    get_bow_features(dat)
    for i in i..5:
        get_ngrams(dat, i)
    get_dependency_features(dat)
```
Ngrams just capture physical proximity of words. Language is more flexible than that.

- The restaurant is good!
- The restaurant, with its adventurous nose-to-tail concept and avant-garde reimagining of the use of salt, is, despite what you might think, good!
People often use dependency parsers to find meaningful links between non-adjacent words.
Feature Engineering

Syntactic Features

- People often use dependency parsers to find meaningful links between non-adjacent words.
mmmmmm. We just finished our first meal at this wonderful place (and by finished I mean until we eat the rest for lunch tomorrow). Best deep dish this side of the south side..... what a great crust, buttery and crunchy even on the bottom. Well worth the wait for a fresh deep dish chicago style! Why, oh why did we wait so long to hear of this seminole heights jewel?! Only other place slightly close to this outside of Chicago is Joey Ds and that is 45 minutes those of us in Tampa dont need to drive!!! Great service, quaint decor....YUM!!!! We will be back! Take out and cash only... no delivery no CCs. Who cares!!!
spacy_processor = spacy.load("en_core_web_sm")

parsed = spacy_processor(raw_data[1460])
for token in parsed:
 print(token.text, token.pos_)

I just finished our first meal at this wonderful place (and by finished I mean until we eat the rest for lunch tomorrow). Best deep dish this side of the south side..... what a great crust, buttery and crunchy even on the bottom. Well worth the wait for a fresh deep dish chicago style! Why, oh why did we wait so long to hear of this seminole heights jewel?! Only other place slightly close to this outside of Chicago is Joey Ds and that is 45 minutes those of us in Tampa dont need to drive!!! Great service, quaint decor....YUM!!!! We will be back! Take out and cash only... no delivery no CCs. Who cares!!!
spacy_processor = spacy.load("en_core_web_sm")

parsed = spacy_processor(raw_data[1460])
for token in parsed:
 print(\t'.join([token.dep_, token.text, token.head.text]))
spacy_processor = spacy.load("en_core_web_sm")

parsed = spacy_processor(raw_data[1460])
for token in parsed:
 print(' \t'.join([token.dep_, token.text, token.head.text]))

ROOT mmmmm mmmmmm
punct . mmmmmm
nsbj We finished
advmod just finished
ROOT finished finished
poss our meal
amod first meal
dobj meal finished
prep at finished
det this place
amod wonderful place
pobj place at
punct (finished
cc and finished
conj by finished
```python
spacy_processor = spacy.load("en_core_web_sm")

parsed = spacy_processor(raw_data[1460])
# show all adjective-noun modifier relationships
for token in parsed:
    if token.dep_ == "amod":
        print(\t\t.join(["%d %d"%(token.i, token.head.i), token.text, token.head.text]))
```

6 7 first meal
10 11 wonderful place
28 30 Best dish
29 30 deep dish
35 36 south side
40 41 great crust
57 61 fresh style
58 59 deep dish
59 61 dish style
82 83 other place
85 83 close place
112 113 Great service
spacy_processor = spacy.load("en_core_web_sm")

parsed = spacy_processor(raw_data[1460])
show all adjective-noun modifier relationships
for token in parsed:
 if token.dep_ == "amod":
 print("\t".join(["%d %d"%(token.i, token.head.i), token.text, token.head.text]))

6 7 first meal
10 11 wonderful place
28 30 Best dish
29 30 deep dish
35 36 south side
40 41 great crust
57 61 fresh style
58 59 deep dish
59 61 dish style
82 83 other place
85 83 close place
112 113 Great service

MMMMMM. We just finished our first meal at this wonderful place (and by finished I mean until we eat the rest for lunch tomorrow). Best deep dish this side of the south side..... what a great crust, buttery and crunchy even on the bottom. Well worth the wait for a fresh deep dish chicago style! Why, oh why did we wait so long to hear of this seminole heights jewel?! Only other place slightly close to this outside of Chicago is Joey Ds and that is 45 minutes those of us in Tampa dont need to drive!!! Great service, quaint decor....YUM!!!! We will be back! Take out and cash only... no delivery no CCs. Who cares!!!
Feature Engineering
More Advanced Features

```python
def extract_features(dat):
    get_bow_features(dat)
    for i in 1..5:
        get_ngrams(dat, i)
    get_dependency_features(dat)
    get_wordnet_features(dat)
```
import spacy
!pip install spacy_wordnet
import spacy_wordnet
from spacy_wordnet.wordnet_annotator import WordnetAnnotator
import nltk
nltk.download('wordnet')
nltk.download('omw-1.4')

spacy_processor = spacy.load("en_core_web_sm")
spacy_processor.add_pipe("spacy_wordnet", after='tagger')
parsed = spacy_processor(raw_data[1460])

for w in parsed:
 print(w, w._.wordnet.synsets())
spacy_processor = spacy.load("en_core_web_sm")
spacy_processor.add_pipe("spacy_wordnet", after='tagger')
parsed = spacy_processor(raw_data[1460])

for w in parsed:
 print(w, w._.wordnet.synsets())
 for s in w._.wordnet.synsets():
 print(s, "hypernyms->", s.hypernyms())
Feature Engineering

More Advanced Features

def extract_features(dat):
 getBowFeatures(dat)
 for i in i..5:
 getNgrams(dat, i)
 getDependencyFeatures(dat)
 getWordnetFeatures(dat)
 getWikipediaPageLinkFeatures(dat)
 getTwitterHistoricalFeatures(data)
...

can be as complex and creative as you want!